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ABSTRACT: 
 
The goal of this research was to investigate the potential of hyperspectral Hyperion (EO-1) data to derive fractional cover of 
rangeland components using constrained linear spectral mixture analysis. Hyperion image data were acquired over the Antelope 
Creek Ranch located in southern Alberta, Canada in July 2005. These image data were first corrected for the sensor artifacts such as 
spatial mis-registration between the VNIR and SWIR data and striping. These data were then atmospherically corrected and 
transformed to surface reflectance, corrected for sensor smile/frown and post-processed to remove residual errors. Iterative Error 
Analysis was utilized to find image endmembers that acted as inputs to the constrained spectral unmixing.  The preliminary results 
show that spectral unmixing was promising for percent cover estimation of green vegetation and litter/soil, but separation of green 
grass from green shrub was challenging due to their spectral similarity. 
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1. INTRODUCTION 

Rangeland occupies 47% of the Earth’s land surface and 
represents a major source of livestock food production 
(Holechek, et. al., 1989). Effective rangeland management 
techniques are crucial to sustain soil quality, enhance the 
availability of clean water, sequester excess carbon dioxide and 
maintain biodiversity in the rangeland ecosystem. There is an 
urgent need for timely information on the state of rangeland for 
the protection and long-term sustainability of this ecosystem. 
Amongst indicators for monitoring rangeland ecosystems, 
vegetation cover and condition are very important parameters 
for understanding the dynamics of plants in such an 
environment [Rowe, et.al., 2002].  

Due to the extensive nature of rangeland, satellite remote 
sensing provides the means to map fractional cover on a 
regional basis in a cost-effective and timely manner. By 
providing image data in hundreds of contiguous narrow spectral 
bands, hyperspectral imaging allows the extraction of 
laboratory-like spectra for each pixel in the image. This high 
level of spectral detail provides a rich source of compositional 
information about the targets, making it feasible to identify  
subtle differences between vegetation communities. Several 
studies have demonstrated the capability of airborne 
hyperspectral remote sensing to detect and map vegetation 
species and their fractional cover (Asner, et al., 2002; Lass, et 
al., 2005). However, such data are not sufficient for monitoring 
rangeland on an operational basis due to their relatively high 
cost and low spatial coverage. Operational spaceborne 
hyperspectral satellites, such as the approved German EnMAP 

mission, will provide the data necessary to support and improve 
sustainable rangeland management practices.    

A quantitative approach, spectral mixture analysis (SMA), is 
commonly used to determine the fractional cover on a pixel 
basis from hyperspectral data. The key task in SMA is to define 
a set of “pure” endmembers that are relevant to the mapping 
objectives and are representative of the physical components of 
the surface. For rangeland monitoring, these endmembers could 
be different plant species/communities, shrub, soil, shadow and 
other surface components (e.g., plant litter, lichens, and rocks). 
Endmembers can be derived from the imagery (image 
endmembers) or measurements in the laboratory/field (library 
endmembers). Image endmembers are commonly preferred over 
the use of library endmembers because the latter are not always 
available, and if available, they are not necessarily acquired 
under the same conditions as airborne or satellite image data 
and may not be representative of true image components.  

The selection of image endmembers is typically achieved 
through the implicit (Pixel Purity Index (Boardman, et. al., 
1995)) or explicit use of convex geometry. A simplex is fit to 
the convex hull of the n-dimensional data cloud and the vertices 
of the simplex define the spectral properties of the endmembers. 
Although a number of approaches to define endmembers have 
been the focus of recent research efforts and several 
methodologies (e.g., Iterative Error Analysis (Neville, et. al., 
1999), N-FINDR (Winter, 1999), Sequential Projection 
Algorithm (Zhang, et. al., 2008), Vertex Component Analysis 
(VCA) (Nascimento and Dias, 2005), Sequential Maximum 
Angle Convex Cone (SMACC) (Gruninger, et. al., 2004), 
Iterated Constrained Endmembers (ICE) (Berman, et. al., 2004), 
Simplex Growing Algorithm (SGA) (Chang, et al., 2006) and 
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Minimum Volume Constrained Non-Negative Factorization 
(MVC-NMF) (Miao and Qi, 2007) have been developed, they 
are seldom tested on rangeland. Identification of suitable 
endmembers for the subsequent fractional cover estimate in the 
rangeland system remains unresolved due to its heterogeneity 
and high spectral similarity amongst vegetative species. 

The paper describes in detail the evaluation of automatic 
endmember selection procedures and subsequent linear SMA in 
rangeland ecosystems using Hyperion hyperspectral data. The 
Iterative Error Analysis (IEA) method was selected to 
automatically find endmembers, given that IEA has been 
reported as the most robust convex-based algorithm (Plaza, et. 
al., 2004.).  The spatial distribution of percentage cover of 
major rangeland components, derived from spectral unmixing, 
will be discussed. Special emphasis is given to the evaluation of 
the data quality prior to the aforementioned analysis. In 
particular, spatial and spectral distortions, noise, and striping of 
the data are investigated and corrected to obtain the best 
possible data quality, an essential requirement for spectral 
unmixing techniques. 
 
 

2. STUDY SITE 

The Antelope Creek Ranch (Lat. 50°37′N, Long. 112°10′W, 
Elevation ~750 m), approximately 15 km west of Brooks, 
Alberta, Canada was selected as the study site. This site, 
established in 1986, is a multi-disciplinary, multi-agency 
research site. The primary objectives of the ranch are to manage 
the ecosystem in such a way that productive plant cover is 
available to livestock and wildlife, and that there is adequate 
nesting cover for waterfowl. The ranch serves as a 
demonstration to producers and resource managers in the  dry 
mixed-grass region for range improvement through specialized 
grazing systems which benefits both livestock and wildlife. 
Figure 1 shows the geographic location of the test site and a 
natural colour composite from Hyperion data of that site. The 
rectangular and circular areas are crop land while the white 
pixels represent exposed soil and litter. Approximately 80% of 
the subset image is native rangeland. 

 
 

Figure 1 Location and overview of the study site 
 
 

3. DATA ACQUISITION AND PROCESSING 

3.1 Hyperion data 

The hyperspectral data for this study were acquired on July 18, 
2005 with the experimental Hyperion sensor on NASA’s EO-1 
platform. Hyperion is a pushbroom imaging spectrometer that 
collects data in the along-track direction. This sensor collects 
the upwelling radiance in 242 spectral bands with a spectral 
resolution of around 10nm. Hyperion has a single telescope and 

consists of two spectrographs, one covering the visible and 
near-infrared (VNIR) wavelength range from 357 nm to 1055 
nm, and a second which covers the short-wave infrared (SWIR) 
from 851 nm to 2576 nm. The spatial resolution of these data 
are 30m. 
 
3.2 Data preprocessing 

The Hyperion EO-1 data were pre-processed with the goal to 
correct for sensor artifacts and atmospheric effects using the 
Imaging Spectrometer Data Analysis System (ISDAS) 
developed at the Canada Centre for Remote Sensing (Figure 2).  
The first step aligns the SWIR data, correcting for a single pixel 
offset between the left and right halves of the image in the 
along-track direction. Once VNIR and SWIR data are aligned, 
image striping and pixel–column dropouts were removed using 
the spectral moment matching approach (Sun, et. al., 2008). The 
VNIR data were then rotated by an angle of 0.22° to match the 
SWIR data using bi-cubic resampling, and noise was reduced 
through spectrally constrained averaging. 
 

 
 

Figure 2 Flow chart for Hyperion data preprocessing 
 
The data cube was subsequently analyzed to characterize the 
spectral shift (‘smile/frown’) using atmospheric feature 
matching. At this step, the data were cropped to exclude noisy 
bands resulting in a final data set that spans the spectral range 
from 426.82 nm to 2355.20 nm with a total of 192 bands 
(excluding the bands in the overlap region between the VNIR 
and SWIR spectrographs). A method developed by Neville et al. 
(2008) was applied to determine the smile/frown using known 
atmospheric absorption features. Wavelength shifts 
(smile/frown effect) were calculated, showing shifts of 
approximately between 1 and 3 nm across track in the VNIR 
and SWIR, respectively. The calibrated at-sensor radiance data 
were converted to surface reflectance using a MODTRAN look-
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up table (LUT) approach (Staenz and Williams, 1997). These 
reflectance data were then corrected for wavelength shift using 
a spectral resampling technique to achieve a set of common 
band wavelength centres and bandwidths for the entire data 
cube. The final post-processing step involved removing residual 
errors that remained after the correction of sensor artifacts and 
atmospheric effects (Staenz, et. al., 1999). 
 

4. SPECTRAL UNMIXING AND ENDMEMBER 
SELECTION 

SMA assumes that the pixel-to-pixel variability in a scene 
results from varying abundances of spectral endmembers. It 
follows that the spectral response for each pixel is a linear 
combination of endmember spectra, weighted by their fractional 
abundances. Let ),( jipr  denote the spectrum for the pixel in the 

image coordinates (i, j), the foundation of linear constrained 
SMA (LCSMA) can be defined by the following formulation: 
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where m is the number of endmembers, ker is the kth 

endmember,  ),( jiε
r

is the error term (residual), which could be 

due to the noise in the data or due to modeling error (or both), 
and kjif ),(  is the fractional abundance for the kth endmember 

of pixel (i, j).   Assuming that the number of endmembers and 
their spectral signatures are known, the fractional abundances of 
endmembers in a given pixel are typically determined from a 
least squares fit (Shimabukuro and Smith, 1991).  

 

The  Iterative Error Analysis (IEA), implemented in the 
Imaging Spectrometer Data Analysis System (ISDAS),  was 
used to automatically find endmembers in the hyperspectral 
scene. IEA is based on the residual error image generated when 
a data set is unmixed using a Weighted Non-negative Least 
Squares approach. To start, the average spectrum of the scene is 
used to unmix the dataset. When a dataset is unmixed, a 
residual error image is produced. These errors are calculated 
using a least-square estimate between the average spectrum and 
the spectrum of each pixel. These errors are also a measure of 
the distance between the average spectrum and all the spectra of 
the dataset. The next step is to find the pixel or pixels that 
encompass the largest errors, i.e., that are furthest away from 
the average spectrum. The user provides the number of pixels 
forming these endmembers. This new endmember is then used 
to unmix the image cube, and the average spectrum is discarded. 
The errors will again be used to find the furthest pixels from the 
first endmember and will create the second endmember. This 
process is repeated until the number of endmembers pre-
determined by the user is reached.   
 
The full spectral range of the Hyperion sensor (except the bands 
close to water absorption features around 1400nm and 1900nm) 
was utilized for endmember selection and subsequent unmixing. 
The IEA technique was used to extract 30 endmembers, each 
composed of a maximum of 10 pixels. These endmembers were 
assessed visually and noisy endmembers, due to bad pixels, 
were discarded. Only error-free endmembers were used in the 
spectral unmixing (Figure 3)  
 
 

5. RESULTS AND DISCUSSIONS 

5.1 Endmembers 

5.1.1 Water/shade:   The water/shade endmembers were 
characterized by a higher reflectance in visible bands and very 
low reflectance value in the SWIR bands (greater than 1400nm) 
(Figure 3D). Depending on the depth of the water body, the 
reflectance varied from 25% to 7% in the green (~550nm) to 
red (~640nm) spectral regions. 

 
 

Figure 3 Endmembers used in the spectral unmixing
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5.1.2 .Green vegetation: This group was characterized by 
typical vegetation absorption features due to photosynthetic 
pigments and water (Figure 3A).   The variability at the green 
peak (~550nm), chlorophyll absorption (680nm) and water 
absorption features (945nm and 1190nm) result from the 
variation of pigment, water content and the leaf structural 
components. These differences may be attributed to different 
species or variation in health or phenological stage within 
species. The detailed characteristics and identification of these 
endmembers require extensive field validation planned for 2008. 
 
5.1.3 Soil/litter:This rangeland site has been extensively 
managed resulting in very high litter content and minimal soil 
exposure, preventing identification of pure soil pixels by the 
IEA. Therefore, this group of endmembers were defined as 
mixtures of soil and litter (Figure 3B). Overall, there are no 
obvious features in the VNIR spectral region except the weak 
chlorophyll absorption feature and the residual errors from the 
atmospheric correction around the water absorption bands at 
940nm and 1130nm. Depending on the content of litter in the 
pixel, the spectra vary considerably in the SWIR bands. For 
example, one of the endmembers has a small clay feature near 
2200nm while other endmembers only display the cellulose-
related features at 2100nm and 2300nm. 
 

5.1.4 Yellow grass: Compared to green vegetation shown in 
Figure 3A, the chlorophyll absorption of yellow/scenecent grass 
endmembers were weaker, and features at 2100nm and 2300nm 
were distinct due to cellulose (Figure 3C). The spectral shape, 
cellulose related features and the depth of the chlorophyll 
absorption could be attributed to the senescent stage of the grass 
in these endmembers. 
 
5.2 Fractional maps 

Figure 4 shows four fractional maps for the green vegetation 
endmembers. Based on the spatial distribution of the four 
endmembers, endmembers 3 (Figure 4A) and 21 (Figure 4B) 
represent two different crop types. Personal communication 
with domain experts identified that endmember 28 represented 
areas of irrigated crested wheatgrass (Figure 4C circle) and tree 
lines (Figure 4C square).  Endmember 10 represented the 
grass/shrub component.  Due to the small percentage cover of 
the shrub and the spectral similarity between the green grass 
and green shrub leaves, the differentiation of species (green 
grass and shrub) is very challenging. 
 
The distribution of soil/litter is relatively low except within the 
cultivated agricultural land as shown in the bottom left corner 
of Figure 5A and Figure 5C. The overall soil/litter percentage is 
less than 25% of the total rangeland cover due to the dominant 

 
 

Figure 4 Fractional maps for green vegetation (EM_3, EM_21, EM_28, EM_10) 
 

 
Figure 3 Fractional maps for soil/litter endmembers and yellow grass 

A: EM_4; B: EM_12, C: EM_14,  
D: total fraction for EM_18, EM_20 and EM_8 
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green vegetation in the peak growing season. The detailed 
interpretation of these maps requires further analysis and field 
work. 
 
The fraction cover for the yellow/scenecent grass endmembers 
was very limited (Figure 5D). This fractional map is the sum of 
three endmembers shown in Figure 3C. Since these 
hyperspectral data were acquired in July (close to peak growing 
season) grass senescence may not have started. There is a patch 
where the abundance of yellow grass is around 40% in the 
bottom right quarter. The identification of this patch requires 
field work which will be conducted this summer. 
 
 

6. CONCLUSION AND RECOMMENDATIONS 

A preliminary investigation indicates that endmember analysis 
of hyperspectral data and spectral mixture analysis shows 
potential for the estimation of the fractional cover of rangeland 
components. However, it was found that two important factors 
impede the automatic endmember extraction procedure and 
subsequent spectral unmixing of hyperspectral data. These are: 
 
1. Currently, a majority of automatic endmember 
extraction algorithms assume the presence of pure pixels. For 
spaceborne hyperspectral data with a typical 30-m spatial 
resolution, it is very difficult to find pure pixels in rangeland 
ecosystem.  A new technique that does not rely on the 
assumption of pure pixels is required to define meaningful 
endmembers for rangeland mapping. 
2. Due to the spectral similarity between green 
vegetative species, it is very challenging to separate grasses 
from shrubs at peak mid-season growth.. Potential speparabitity 
may exist later in the season as shrub species remail green but 
most of the grasses will become senescent. Utilization of multi-
temporal datasets may also be advantageous. 
 
Given that the rangeland is highly heterogeneous, the spectral 
variability within the endmember classes is relatively high.  
New SMA procedures are required to handle the incomplete 
endmember set and incorporate this spectral variability within 
endmember classes in the spectral unmixing procedure. 
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